Part Number Hot Search : 
DSO751SB AK9813B 1620C SPC817M IRFP3 C812C ZUMT848B ZX84B6V8
Product Description
Full Text Search
 

To Download TS48205 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS482
100mW Stereo Headphone Amplifier

Operating from Vcc=2V to 5.5V 100mW into 16 at 5V 38mW into 16 at 3.3V 11.5mW into 16 at 2V Switch ON/OFF click reduction circuitry High power supply rejection ratio: 85dB at 5V High signal-to-noise ratio: 110dB(A) at 5V High crosstalk immunity: 100dB (F=1kHz) Rail-to-rail input and output Unity-gain stable Available in SO-8, MiniSO-8 & DFN8
TS482ID, TS482IDT - SO-8
OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2)
TS482IST - MiniSO-8
OUT (1) VIN- (1) VIN+ (1) GND 1 2 3 4 8 7 6 5 VCC OUT (2) VIN- (2) VIN+ (2)
TS482IQT - DFN8
Description
OUT (1)
1 2 3 4
8 7 6 5
Vcc OUT (2) VIN - (2) VIN + (2)
The TS482 is a dual audio power amplifier able to drive a 16 or 32 stereo headset down to low voltages. It is delivering up to 100mW per channel (into 16 loads) of continuous average power with 0.1% THD+N from a 5V power supply. The unity gain stable TS482 can be configured by external gain-setting resistors.
VIN - (1) VIN + (1) GND
Typical application schematic
Rfeed1 3.9k RpolVcc Cs 100k 8 3.9k 2 1 Rin1 3 + Cb TS482 + 5 + 7 Rin2 1F 6 3.9k 4 100k Rpol 3.9k
+
1F
Vcc
+

Stereo headphone amplifier Optical storage Computer motherboard PDA, organizers & notebook computers High-end TV, set-top box, DVD players Sound cards
Left In
2.2F 2.2F
+
Cin2
Rfeed2
Order Codes
Part Number TS482ID/IDT TS482IST TS482IQT -40, +85C Temperature Range Package SO-8 miniSO-8 DFN8 Packing Tube or Tape & Reel Tape & Reel 482I Marking
November 2005
+ +
Applications
Right In Cin1
20F 2
+
RL=32Ohms
Cout1 Cout2
+
RL=32Ohms
220F
Rev 2 1/26
www.st.com
26
Absolute Maximum Ratings
TS482
1
Absolute Maximum Ratings
Table 1.
Symbol VCC Vi Toper Tstg Tj Supply voltage (1) Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient Rthja SO8 MiniSO8 DFN8 Power Dissipation (2) Pd SO-8 MiniSO-8 DFN8 Human Body Model (pin to pin) Machine Model - 220pF - 240pF (pin to pin) Latch-up Immunity (all pins) Lead Temperature (soldering, 10sec) Lead Temperature (soldering, 10sec) for lead-free Output Short-Circuit Duration
1. All voltages values are measured with respect to the ground pin. 2. Pd has been calculated with Tamb = 25C, Tjunction = 150C. 3. Attention must be paid to continuous power dissipation. Exposure of the IC to a short circuit on one or two amplifiers simultaneously can cause excessive heating and the destruction of the device.
Key parameters and their absolute maximum ratings
Parameter Value 6 -0.3 to VCC +0.3 -40 to + 85 -65 to +150 150 Unit V V C C C
175 215 70
C/W
0.71 0.58 1.79 2 200 200 250 260 see note (3)
W
ESD ESD Latch-up
kV V mA C C
Table 2.
Symbol VCC RL CL
Operating conditions
Parameter Supply Voltage Load Resistor Load Capacitor RL = 16 to 100 RL > 100 Common Mode Input Voltage Range Thermal Resistance Junction to Ambient 400 100 G ND to VCC pF Value 2 to 5.5 >= 16 Unit V
Vicm
V
Rthja
SO-8 MiniSO-8 DFN8(1)
150 190 41
C/W
1. When mounted on a 4-layer PCB.
2/26
TS482
Electrical Characteristics
2
Electrical Characteristics
Table 3.
Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 60 95 65 67.5 100 107 mW
Electrical characteristics when VCC = +5V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Min. Typ. 5.5 1 200 Max. 7.2 5 500 Unit mA mV nA
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32, Pout = 60mW, 20Hz F 20kHz RL = 16, Pout = 90mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC /2 Output Swing VOL: R L = 32 VOH: R L = 32 VOL: R L = 16 VOH: R L = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32, THD +N < 0.2%, 20Hz F 20kHz 95 110 106 120 85 0.03 0.03 %
PSRR
dB
IO
mA
VO
4.45 4.2
0.4 4.6 0.55 4.4
0.48 V 0.65
SNR
dB
Channel Separation, R L = 32 F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32) Slew Rate, Unity Gain Inverting (R L = 16) 1.35 0.45
100 80 100 80 1 2.2 0.7
dB
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
3/26
Electrical Characteristics
Table 4.
Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power PO THD+N = THD+N = THD+N = THD+N = 0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16 23 36 27 28 38 42
TS482
Electrical characteristics when VCC = +3.3V, GND = 0V, Tamb = 25C (unless otherwise specified) (1)
Parameter Min. Typ. 5.3 1 200 Max. 7.2 5 500 Unit mA mV nA
mW
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32, Pout = 16mW, 20Hz F 20kHz RL = 16, Pout = 35mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL: R L = 32 VOH: R L = 32 VOL: R L = 16 VOH: R L = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32, THD +N < 0.2%, 20Hz F 20kHz 92 107 64 75 80 0.03 0.03 %
PSRR
dB
IO
mA
VO
2.85 2.68
0.3 3 0.45 2.85
0.38 V 0.52
SNR
dB
Channel Separation, R L = 32 F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32) Slew Rate, Unity Gain Inverting (R L = 16) 1.2 0.45
100 80 100 80 1 2 0.7
dB
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
1. All electrical values are guaranteed with correlation measurements at 2V and 5V.
4/26
Electrical Characteristics
Table 5.
Symbol ICC VIO IIB Supply Current No input signal, no load Input Offset Voltage (VICM = VCC/2) Input Bias Current (VICM = V CC/2) Output Power PO THD+N THD+N THD+N THD+N = 0.1% Max, F = 1kHz, RL = 32 = 1% Max, F = 1kHz, RL = 32 = 0.1% Max, F = 1kHz, RL = 16 = 1% Max, F = 1kHz, RL = 16 12.5 17.5 13.5 14.5 20.5 22
TS482
Electrical characteristics when VCC = +2.5V, GND = 0V, Tamb = 25C (unless otherwise specified) (2)
Parameter Min. Typ. 5.1 1 200 Max. 7.2 5 500 Unit mA mV nA
mW
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32, Pout = 10mW, 20Hz F 20kHz RL = 16, Pout = 16mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and V CC/2 Output Swing VOL: RL = 32 VOH: RL = 32 VOL: RL = 16 VOH: RL = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32, THD +N < 0.2%, 20Hz F 20kHz 89 102 45 56 75 0.03 0.03 %
PSRR
dB
IO
mA
VO
2.14 1.97
0.25 2.25 0.35 2.15
0.325 V 0.45
SNR
dB
Channel Separation, RL = 32 F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, RL = 16 F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (RL = 32) Slew Rate, Unity Gain Inverting (RL = 16) 1.2 0.45
100 80 100 80 1 2 0.7
dB
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
2. All electrical values are guaranteed with correlation measurements at 2V and 5V.
5/26
Electrical Characteristics
Table 6.
Symbol ICC VIO IIB
TS482
Electrical characteristics when VCC = +2V, GND = 0V, Tamb = 25C (unless otherwise specified)
Parameter Supply Current No input signal, no load Input Offset Voltage (VICM = V CC/2) Input Bias Current (V ICM = VCC/2) Output Power Min. Typ. 5 1 200 Max. 7.2 5 500 Unit mA mV nA
PO
THD+N = THD+N = THD+N = THD+N =
0.1% Max, F = 1kHz, RL = 32 1% Max, F = 1kHz, RL = 32 0.1% Max, F = 1kHz, RL = 16 1% Max, F = 1kHz, RL = 16
7 9.5
8 9 11.5 13
mW
Total Harmonic Distortion + Noise (Av=-1) (1) THD + N RL = 32, Pout = 6.5mW, 20Hz F 20kHz RL = 16, Pout = 8mW, 20Hz F 20kHz Power Supply Rejection Ratio (Av=1), inputs floating F = 100Hz, Vripple = 100mVpp Max Output Current THD +N < 1%, RL = 16 connected between out and VCC/2 Output Swing VOL: R L = 32 VOH: R L = 32 VOL: R L = 16 VOH: R L = 16 Signal-to-Noise Ratio (Filter Type A, Av=-1) RL = 32, THD +N < 0.2%, 20Hz F 20kHz 88 101 33 41.5 75 0.02 0.025 %
PSRR
dB
IO
mA
VO
1.67 1.53
0.24 1.73 0.33 1.63
0.295 V 0.41
SNR
dB
Channel Separation, R L = 32 F = 1kHz F = 20Hz to 20kHz Crosstalk Channel Separation, R L = 16 F = 1kHz F = 20Hz to 20kHz CI GBP SR Input Capacitance Gain Bandwidth Product (R L = 32) Slew Rate, Unity Gain Inverting (R L = 16) 1.2 0.42
100 80 100 80 1 2 0.65
dB
pF MHz V/s
1. Fig. 68 to 79 show dispersion of these parameters.
6/26
Electrical Characteristics
Table 7. Components description
Functional Description
TS482
Components Rin Cin Rfeed Cs Cb Cout Rpol Av
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Feed back resistor which sets the closed loop gain in conjunction with Rin Supply Bypass capacitor which provides power supply filtering Bypass capacitor which provides half supply filtering Output coupling capacitor which blocks the DC voltage at the load input terminal This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x RL x Cout)) These 2 resistors form a voltage divider which provide a DC biasing voltage (Vcc/2) for the 2 amplifiers. Closed loop gain = -Rfeed / Rin
7/26
Electrical Characteristics
Table 8. Index of graphics
Description Figure
TS482
Page
Open loop gain and phase vs. frequency response Phase and Gain Margin vs. Power Supply Voltage Output power vs. power supply voltage Output power vs. load resistance Power dissipation vs. output power Power derating vs. ambient temperature Current consumption vs. power supply voltage Power supply rejection ratio vs. frequency THD + N vs. output power THD + N vs. frequency Signal to noise ratio Equivalent input noise voltage vs. frequency Output voltage swing vs. power supply Crosstalk vs. frequency Lower cut off frequency vs. output capacitor Lower cut off frequency vs. input capacitor Typical distribution of TDH + N
Figure 1 to10 Figure 11 to 20 Figure 21 to 23 Figure 24 to 27 Figure 28 to 31 Figure 32 Figure 33 Figure 34 Figure 35 to 49 Figure 50 to 54 Figure 55 to 58 Figure 59 Figure 60 Figure 61 to 65 Figure 66 Figure 67 Figure 68 to 79
Page 9 to10 Page 10 to12 Page 12 Page 12 to13 Page 13 to14 Page 14 Page 14 Page 14 Page 14 to17 Page 17 Page 18 Page 18 Page 18 Page 19 Page 19 Page 20 Page 20 to22
8/26
Electrical Characteristics
Figure 1. Open loop gain and phase vs. frequency response Figure 2. Open loop gain and phase vs. frequency response
TS482
80 Gain 60 40
Gain (dB)
180 Vcc = 5V RL = 8 Tamb = 25C 160 140 120
Phase (Deg) Gain (dB)
80 Gain 60 40 20 0 -20 -40 0.1 Phase Vcc = 2V RL = 8 Tamb = 25C
180 160 140 120 100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Phase (Deg) Phase (Deg) Phase (Deg)
100 20 0 -20 -40 0.1 Phase 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Figure 3.
Open loop gain and phase vs. frequency response
Figure 4.
Open loop gain and phase vs. frequency response
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 16 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 16 Tamb = 25C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Figure 5.
Open loop gain and phase vs. frequency response
Figure 6.
Open loop gain and phase vs. frequency response
180 80 60
Gain (dB)
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 32 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 32 Tamb = 25C
160 140 120
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
9/26
Electrical Characteristics
Figure 7. Open loop gain and phase vs. frequency response
180 80 60
Gain (dB)
TS482
Figure 8. Open loop gain and phase vs. frequency response
180 80 60
Phase (Deg) Gain (dB)
Gain
Vcc = 5V RL = 600 Tamb = 25C
160 140 120
Gain
Vcc = 2V RL = 600 Tamb = 25C
160 140 120 100
Phase (Deg) Phase (Deg)
40 20 0 -20 -40 0.1 Phase
100 80 60 40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
40 20 0 -20 -40 0.1 Phase
80 60 40 20 0 1 10 100 Frequency (kHz) 1000 10000 -20
Figure 9.
Open loop gain and phase vs. frequency response
180
Figure 10. Open loop gain and phase vs. frequency response
180 80 60 Gain Vcc = 2V RL = 5k Tamb = 25C 160 140 120
80 60
Gain (dB)
Gain
Vcc = 5V RL = 5k Tamb = 25C
160 140 120
Phase (Deg)
100 Phase 80 60
Gain (dB)
40 20 0 -20 -40 0.1
40 20 0 -20 Phase
100 80 60 40 20 0
40 20 0 1 10 100 1000 Frequency (kHz) 10000 -20
-40 0.1
1
10 100 Frequency (kHz)
1000
10000
-20
Figure 11.
Phase margin vs. power supply voltage Figure 12. Phase margin vs. power supply voltage
50 RL=8 Tamb=25C 40
Phase Margin (Deg)
50 RL=8 Tamb=25C 40
30
Gain Margin (dB)
30
20
CL= 0 to 500pF
20
CL=0 to 500pF
10
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
10/26
Electrical Characteristics
TS482
Figure 13. Phase margin vs. power supply voltage Figure 14. Gain margin vs. power supply voltage
50 50 RL=16 Tamb=25C 40
Phase Margin (Deg)
40
30
Gain Margin (dB)
CL= 0 to 500pF
30
20
20
CL=0 to 500pF
10 RL=16 Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
10
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Figure 15. Phase margin vs. power supply voltage Figure 16. Gain margin vs. power supply voltage
50
50 RL=32 Tamb=25C
40
Phase Margin (Deg)
40 CL= 0 to 500pF
Gain Margin (dB)
30
30
20
20 CL=0 to 500pF 10
10 RL=32 Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
Figure 17. Phase margin vs. power supply voltage Figure 18. Gain margin vs. power supply voltage
70 60
Phase Margin (Deg)
20
CL=0pF CL=100pF CL=200pF
CL=0pF 40 30 20 10 RL=600 Tamb=25C 2.5
CL=500pF
Gain Margin (dB)
50
10
CL=500pF
RL=600 Tamb=25C 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
0 2.0
11/26
Electrical Characteristics
Figure 19.
70 60
Phase Margin (Deg)
TS482
Phase margin vs. power supply voltage Figure 20. Gain margin vs. power supply voltage
20
CL=0pF
Gain Margin (dB)
50 40 30 20 10 0 2.0 RL=5k Tamb=25C 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0 CL=0pF CL=300pF CL=500pF
CL=100pF
10
CL=200pF
CL=500pF
RL=5k Tamb=25C 0 2.0 2.5 3.0 3.5 4.0 Power Supply Voltage (V) 4.5 5.0
Figure 21.
250 225 200
Output power (mW)
Output power vs. power supply voltage Figure 22.
200 Av = -1 RL = 8 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10% 175 THD+N=1% 150
Output power (mW)
Output power vs. power supply voltage
175 150 125 100 75 50 25
125 100 75 50
Av = -1 RL = 16 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
THD+N=1%
THD+N=0.1% 25 2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5 0 2.0 2.5 3.0 3.5 4.0 Vcc (V)
THD+N=0.1%
0 2.0
4.5
5.0
5.5
Figure 23.
Output power vs. power supply voltage Figure 24. Output power vs. load resistance
200
100 Av = -1 RL = 32 F = 1kHz BW < 125kHz Tamb = 25C THD+N=10%
180
THD+N=1%
160
Output power (mW)
THD+N=1%
Output power (mW)
140 120 100 80 60 40 20 THD+N=0.1%
75
Av = -1 Vcc = 5V F = 1kHz BW < 125kHz Tamb = 25C
THD+N=10%
50
25
THD+N=0.1%
0 2.0
2.5
3.0
3.5 4.0 Vcc (V)
4.5
5.0
5.5
0
8
16
24
32 40 48 Load Resistance ( )
56
64
12/26
Electrical Characteristics
Figure 25. Output power vs. load resistance
TS482
Figure 26. Output power vs. load resistance
50
70 60
Output power (mW)
THD+N=1%
Output power (mW)
50 40
Av = -1 Vcc = 3.3V F = 1kHz BW < 125kHz Tamb = 25C
45 40 35 30 25 20 15 10 5 THD+N=0.1% 8 16 24 32 40 48 Load Resistance (ohm) THD+N=1%
Av = -1 Vcc = 2.6V F = 1kHz BW < 125kHz Tamb = 25C
THD+N=10% 30 20 10 0 THD+N=0.1%
THD+N=10%
8
16
24
32 40 48 Load Resistance (ohm)
56
64
0
56
64
Figure 27. Output power vs. load resistance
Figure 28. Power dissipation vs. output power
25 Av = -1 Vcc = 2V F = 1kHz BW < 125kHz Tamb = 25C
20
Output power (mW)
Power Dissipation (mW)
160 Vcc=5V F=1kHz 140 THD+N<1% RL=8 120 100 80 60 RL=16 40 20 0 0 20 40 60 RL=32 80 100 120 140
THD+N=1% 15
THD+N=10% 10
5 THD+N=0.1% 0 8 16 24 32 40 48 Load Resistance (ohm) 56 64
Output Power (mW)
Figure 29. Power dissipation vs. output power Figure 30. Power dissipation vs. output power
70 Vcc=3.3V 60 F=1kHz THD+N<1% 50 40 30 RL=16 20 10 0 RL=32
40
Power Dissipation (mW)
Power Dissipation (mW)
RL=8
Vcc=2.6V F=1kHz THD+N<1% RL=8
30
20 RL=16 10 RL=32 0
0
10
20
30
40
50
60
0
5
10
15
20
25
30
Output Power (mW)
Output Power (mW)
13/26
Electrical Characteristics
Figure 31. Power dissipation vs. output power Figure 32. Power derating vs. ambient temperature
25
TS482
Power Dissipation (mW)
Vcc=2V F=1kHz 20 THD+N<1% RL=8 15
10 RL=16 5 RL=32 0 0 2 4 6 8 10 12 14
Output Power (mW)
Figure 33. Current consumption vs. power supply voltage
Figure 34. Power supply rejection ratio vs. frequency
6 No load
100 80
Vcc=5V
Current Consumption (mA)
5 4 3 Ta=25C 2 1 0
Ta=85C
Ta=-40C
PSRR (dB)
60 40 20 0 20
Vcc=3.3V
Vcc=2.6V & 2V
Vripple=100mVpp Vpin3,5=Vcc/2 (forced bias) RL >= 8 0db=70mVrms Tamb=25C 100 1000 10000 Frequency (Hz) 100000
0
1
2 3 Power Supply Voltage (V)
4
5
Figure 35. THD + N vs. output power
Figure 36. THD + N vs. output power
10 RL = 8 F = 20Hz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.6V
10 RL = 16 F = 20Hz Av = -1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V
1
THD + N (%)
Vcc=5V
THD + N (%)
0.1
0.1 0.01
Vcc=3.3V
Vcc=3.3V
Vcc=5V
0.01
1
10 Output Power (mW)
100
1E-3
1
10 Output Power (mW)
100
14/26
Electrical Characteristics
Figure 37. THD + N vs. output power Figure 38. THD + N vs. output power
TS482
10 RL = 32 F = 20Hz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=2V Vcc=2.6V
10 RL = 600 F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
THD + N (%)
THD + N (%)
Vcc=3.3V Vcc=5V
0.01
0.01
1E-3
100
1E-3
1
10 Output Power (mW)
0.01
0.1 Output Voltage (Vrms)
1
Figure 39. THD + N vs. output power
10 RL = 5k F = 20Hz 1 Av = -1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
Figure 40. THD + N vs. output power
10 RL = 8 F = 1kHz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.6V
THD + N (%)
THD + N (%)
0.01
0.1
Vcc=3.3V
1E-3 0.01 0.1 Output Voltage (Vrms) 1
0.01 1 10 Output Power (mW)
Vcc=5V
100
Figure 41. THD + N vs. output power
Figure 42. THD + N vs. output power
10 RL = 16 F = 1kHz Av = -1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V
10 RL = 32 F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=2V Vcc=2.6V
1
THD + N (%)
0.1
0.01
THD + N (%)
Vcc=3.3V Vcc=5V
0.01
1E-3
Vcc=3.3V
Vcc=5V
1
10 Output Power (mW)
100
1E-3
1
10 Output Power (mW)
100
15/26
Electrical Characteristics
Figure 43. THD + N vs. output power Figure 44. THD + N vs. output power
TS482
10 RL = 600 F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
10 RL = 5k F = 1kHz Av = -1 1 BW < 125kHz Tamb = 25C 0.1
Vcc=5V Vcc=2V Vcc=2.6V Vcc=3.3V
THD + N (%)
0.01
THD + N (%)
0.01
1E-3 0.01
0.1 Output Voltage (Vrms)
1
1E-3 0.01
0.1 Output Voltage (Vrms)
1
Figure 45. THD + N vs. output power
Figure 46. THD + N vs. output power
10 RL = 8 F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V Vcc=2.6V
10 RL = 16 F = 20kHz Av = -1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V
THD + N (%)
0.1
THD + N (%)
Vcc=3.3V Vcc=5V
1
0.1
Vcc=3.3V
Vcc=5V
0.01
1
10 Output Power (mW)
100
0.01
1
10 Output Power (mW)
100
Figure 47. THD + N vs. output power
Figure 48. THD + N vs. output power
10 RL = 32 F = 20kHz Av = -1 BW < 125kHz 1 Tamb = 25C
Vcc=2V
10 RL = 600 F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V Vcc=3.3V
THD + N (%)
0.1
THD + N (%)
Vcc=2.6V
0.1
Vcc=5V
0.01 1
Vcc=3.3V
Vcc=5V
0.01
10 Output Power (mW)
100
0.01
0.1 Output Voltage (Vrms)
1
16/26
Electrical Characteristics
Figure 49. THD + N vs. output power
10 RL = 5k F = 20kHz Av = -1 1 BW < 125kHz Tamb = 25C
Vcc=2V Vcc=2.6V Vcc=3.3V Vcc=5V
TS482
Figure 50. THD + N vs. frequency
0.1 RL=8 Av=-1 Bw < 125kHz Tamb=25C
THD + N (%)
0.1
0.01
0.01
THD + N (%)
Vcc=2V, Po=10mW Vcc=2.6V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW
0.01
0.1 Output Voltage (Vrms)
1
20
100
1000 Frequency (Hz)
10000 20k
Figure 51. THD + N vs. frequency
0.1 RL=16 Av=-1 Bw < 125kHz Tamb=25C
THD + N (%)
Figure 52. THD + N vs. frequency
0.1 RL=32 Av=-1 Bw < 125kHz Tamb=25C
Vcc=2V, Po=6.5mW
Vcc=2.6V, Po=18mW Vcc=3.3V, Po=35mW Vcc=5V, Po=90mW
THD + N (%)
Vcc=2V, Po=8mW
Vcc=2.6V, Po=12mW Vcc=3.3V, Po=16mW Vcc=5V, Po=60mW
0.01
0.01 20 100 1000 Frequency (Hz) 10000 20k 20 100 1000 Frequency (Hz) 10000 20k
Figure 53. THD + N vs. frequency
Figure 54. THD + N vs. frequency
0.1 RL=600 Av=-1 Bw < 125kHz Tamb=25C
0.1 RL=5k Av=-1 Bw < 125kHz Tamb=25C
THD + N (%)
Vcc=5V, Vo=1.4Vrms
Vcc=5V, Vo=1.4Vrms Vcc=3.3V, Vo=1Vrms
THD + N (%)
Vcc=3.3V, Vo=1Vrms
0.01
Vcc=2.6V, Vo=0.75Vrms Vcc=2V, Vo=0.55Vrms
0.01
Vcc=2.6V, Vo=0.75Vrms
Vcc=2V, Vo=0.55Vrms
1E-3
20
100
1000 Frequency (Hz)
10000 20k
1E-3
20
100
1000 Frequency (Hz)
10000 20k
17/26
Electrical Characteristics
TS482
Figure 55. Signal to noise ratio vs. power Figure 56. Signal to noise ratio vs. power supply with unweighted filter (20Hz supply with unweighted filter (20Hz to 20kHz) to 20kHz)
110 Av = -1 108 THD+N < 0.2% 106 Tamb = 25C 104 102 100 98 96 94 92 90 2.0 2.5 RL=16 3.0 3.5 4.0 4.5 5.0 RL=8 RL=32
110 108 Av = -1 THD+N < 0.2% Tamb = 25C
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
106 104 102 100 98 96 94 92
RL=600 RL=5k
90 2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply (V)
Power Supply (V)
Figure 57. Signal to noise ratio vs. power supply with A weighted filter
Figure 58. Signal to noise ratio vs. power supply with A weighted filter
120
120 115 110 RL=32 105 100 95 90 2.0 RL=16 Av = -1 THD+N < 0.2% Tamb = 25C
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
115 110 105
Av = -1 THD+N < 0.2% Tamb = 25C
RL=600 RL=5k
RL=8
100 95 90 2.0
2.5
3.0
3.5
4.0
4.5
5.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply (V)
Power Supply (V)
Figure 59. Equivalent input noise voltage vs. frequency
25 Vcc=5V Rs=100 Tamb=25C 20
Figure 60. Output voltage swing vs. power supply
5.0 4.5 4.0
VOH & VOL (V)
Equivalent Input Noise Voltage (nv/ Hz)
Tamb=25C
3.5 3.0 2.5 2.0 1.5 1.0 0.5 RL=8 RL=16 RL=32
15
10
5 0.02
0.1
1 Frequency (kHz)
10
0.0 2.0
2.5
3.0 3.5 4.0 Power Supply Voltage (V)
4.5
5.0
18/26
Electrical Characteristics
Figure 61. Crosstalk vs. frequency Figure 62. Crosstalk vs. frequency
TS482
100
100
80
ChB to ChA ChA to ChB
80
ChB to ChA ChA to ChB
Crosstalk (dB)
Crosstalk (dB)
60 RL=8 Vcc=5V Pout=100mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
60 RL=16 Vcc=5V Pout=90mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
40
40
20
20
Figure 63. Crosstalk vs. frequency
Figure 64. Crosstalk vs. frequency
120
100
100
80 ChB to ChA & ChA to Chb
Crosstalk (dB)
60 RL=32 Vcc=5V Pout=60mW Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Crosstalk (dB)
80 60 40 20 0
ChB to ChA & ChA to Chb
40
20
RL=600 Vcc=5V Vout=1.4Vrms Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k
Figure 65. Crosstalk vs. frequency
Figure 66. Lower cut off frequency vs. output capacitor
120 100 80 60 40 20 0 RL=5k Vcc=5V Vout=1.5Vrms Av=-1 Bw < 125kHz Tamb=25C 20 100 1000 Frequency (Hz) 10000 20k ChB to ChA & ChA to Chb
1000
-3dB Cut Off Frequency (Hz)
RL=8 100 RL=16 RL=32 10
Crosstalk (dB)
1
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Output Capacitor Cout ( F)
19/26
Electrical Characteristics
Figure 67. Lower cut off frequency vs. input capacitor
TS482
Figure 68. Typical distribution of TDH + N
1000
40 36
Rin=3.9k
-3dB Cut Off Frequency (Hz)
32
Number of Units
Rin=10k
100
28 24 20 16 12 8 4
Rin=22k
Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C
10
1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
Input Capacitor Cin ( F)
THD+N (%)
Figure 69. Best case distribution of THD + N
Figure 70. Worst case distribution of THD + N
40 36 32
Number of Units
40 Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
28 24 20 16 12 8 4 0
Vcc=5V RL=16 Av=-1 Pout=90mW 20HzF20kHz Tamb=25C
0.042
0.048
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
Figure 71. Typical distribution of TDH + N
Figure 72. Best case distribution of THD + N
40 36 32
Number of Units
40 Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
28 24 20 16 12 8 4 0
Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C
0.042
0.048
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
20/26
Electrical Characteristics
Figure 73. Worst case distribution of THD + N
TS482
Figure 74. Typical distribution of TDH + N
40 36 32
Number of Units
20 Vcc=2V RL=16 Av=-1 Pout=8mW 20HzF20kHz Tamb=25C 18 16
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
14 12 10 8 6 4 2
Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C
0.042
0.048
0 0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
Figure 75. Best case distribution of THD + N
Figure 76. Worst case distribution of THD + N
20 18 16
Number of Units
20 Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C 18 16
Number of Units
14 12 10 8 6 4 2 0 0.012 0.018 0.024 0.030 0.036
14 12 10 8 6 4 2
Vcc=5V RL=32 Av=-1 Pout=60mW 20HzF20kHz Tamb=25C
0.042
0.048
0 0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
Figure 77. Typical distribution of TDH + N
Figure 78. Best case distribution of THD + N
40 36 32
Number of Units
40 Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
28 24 20 16 12 8 4
Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C
0.042
0.048
0
0.012
0.018
0.024
0.030
0.036
0.042
0.048
THD+N (%)
THD+N (%)
21/26
Electrical Characteristics
Figure 79. Worst case distribution of THD + N
TS482
40 36 32
Number of Units
28 24 20 16 12 8 4 0 0.012 0.018 0.024 0.030 0.036
Vcc=2V RL=32 Av=-1 Pout=6.5mW 20HzF20kHz Tamb=25C
0.042
0.048
THD+N (%)
22/26
Package Mechanical Data
TS482
3
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
3.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM. A A1 A2 B C D E e H h L k ddd 0.1 5.80 0.25 0.40 mm. MIN. 1.35 0.10 1.10 0.33 0.19 4.80 3.80 1.27 6.20 0.50 1.27 8 (max.) 0.04 0.228 0.010 0.016 TYP MAX. 1.75 0.25 1.65 0.51 0.25 5.00 4.00 MIN. 0.053 0.04 0.043 0.013 0.007 0.189 0.150 0.050 0.244 0.020 0.050 inch TYP. MAX. 0.069 0.010 0.065 0.020 0.010 0.197 0.157
0016023/C
23/26
Package Mechanical Data
TS482
3.2
MiniSO-8 Package
24/26
Package Mechanical Data
TS482
3.3
DFN8 Package
25/26
Revision history
TS482
4
Revision history
Date June 2003 Revision 1 Initial release. The following changes were made in this revision: - Lead temperature for lead-free added see Table 1: Key parameters and their absolute maximum ratings on page 2. - Formatting changes throughout. Changes
Nov. 2005
2
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
26/26


▲Up To Search▲   

 
Price & Availability of TS48205

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X